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1. Tile change in the energy of a gas moving in a gravitational field! 
is determined by the equation 

&P($+e)+divP(G+w)v-Pvg=O (f-1) 

iIere t is time, v the velocity of the particles, 6 the acceleration 

of gravity, p the density, E the internal specific energy, and w the 
specific enthalpy. The quantity 10 is related to E and to the pressure p 
of the gas by the formula 

PW=PfJ-+-P 

We will consider the propagation of a sound wave in a nonhomogeneous 
medium. We will assume that in the undisturbed state the pressure p,,, 
the density p,,, the internal energy Ed, and the relative enthalpy w,, do 
not change with time, and are given as functions of the coordinates. For 
the sake of simplicity, we will assume that the velocity is zero in the 
undisturbed state, i.e. 

vo = 0 

The equilibrium equation of the medium in this case is 

grad PO = peg (1.2) 

Let us simplify Equation (1.1) by making use of the smallness of the 
amplitude of a sound wave. For this purpose we expand the quantity pw 
into a series in terms of the thermodynamic variables of pressure p, and 
of relative entropy s. Lt T denote the temperature of the material. In 
accordance with thermodynamic principles 

dw = Tds f $dp 
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Making use of this equation, we can write 
pi in terms of the first and second order of 
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the resulting expansion for 
infinitesimals as 

PW = POW0 + I+ ( ~)P~+[PoTo+wo(~)JS~ + 

+$[&+wo($$)JP~s +($+wo&)P’s’+ 

+ f [2To (S), + 5 + wo (a),3 S’z 

Here a is the velocity of sound; cp is the specific heat capacity at 
constant pressure; p’ and s’ are the deviations of pressure, and entropy 
from their equilibrium values. lhe subscript zero refers to quantities in 
the undisturbed state. 

Let us substitute the last displayed expression into Equation (1.1). 
For the simplification of the resulting expression we make use of the 
equilibrium equation (1.21, and also of the continuity equations of Euler, 
and of the equations of the conservation of entropy, in which we drop the 
quadratic terms. We thus obtain the equation which expresses the law of 
the conservation of the energy in a sound wave 

G i ( povs + & pta) + div P'V + $ ($-), s'vg = o (1.3) 

If in the equilibrium state the entropy of the medium is constant in 
the entire volume under consideration, i.e. if 

so = const 

then it is easy to see that s’ = 0. In this 
Equation (1.3) will disappear. It will also 
is absent. 

case the last term of the 
vanish when the gravity field 

In the propagation of a sound wave in an 
the Equation (1.3) can be given the form 

ideal gas with cp = const, 

Let us now consider the propagation’of a short sound wave, i.e. of a 
wave with a narrow band of the disturbed flow. The amplitude and direction 
of such a wave hardly change over distances of the order of the width of 
the disturbed region A , When A + 0, the following first approximate 
relations, determining* the shock front, hold between the parameters of the 

gas 

v = vn, v=ip~, s’ = 0 
PO@ 

(1.4) 
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JJere n is the normal to the wave frnnt. 

In a short wave, the density of the sound ener,? e, and the density 

of the stream of sound energy g are connected by an equation that charac- 

terizes a planar traveling impulse of small amplitude 

q = a,en, e = + 
( 
pavz+ &TPt2 9 1 

q = prv (1.5) 

Substituting (1.1) an.i (1.5) into the relation (1.31, we obtain the 

fundamental equation of geometrical acoustics 

at + aon grad age + uo2e div n = 0 

Let us introduce the derivative along a ray along which an element of 

the wave moves 

d 

dt= + + a0 (W 

Integrating the last equation, we obtain 

e =e,zexp 
( 

- 

t 

s a, div n dt 
) 

Here e,, and u,,~ denote the density 

librium density at the initial moment 

initial point of the ray. 

(l-6) 
t, 

of the sound ener&T, and the equi- 

of time t = t,, taken at the 

'lhe Equation (1.6) determines the change in the intensity of t!le sound 

along the path of a wave element. Let p,,' and pOO denote the surplus 

pressure and the equilibrium density at the initial moment of time t = to. 
From the Formula (1.6) follows the law of the change of the amplitude of 

the sound wave 
t 

P’ = PO’ If- 
-!?!?kexp -5 
PCU a00 ( s 

a,div n dt 
1 (1.7) 

to 

The Formula (1.7) has been derived in a different way by Keller [l], 
where it is transformed into 

pLp;~~~$ (1.8) 

4ere 1 'I * is the area of a cross section of the elementaiy ray tube at 

the time moment t, f. is the cross section of the tube w!len t = t,. 

2. Let us now consider the motion of a short wave of small amplitude 

in the approximation of geometrical acoustics. In this approximation the 

velocity of the shock wave is different from the velocity of propagation 

of sound waves, while its amplitude decays according to a different law 
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than (1.8). For the sake of simplicity let us assume that all surplus 
quantities in a sound impulse with a shock wave have a triangular profile. 

Let P,‘ denote the amplitude of the shock wave in the approximation of 
geometric acoustics; let A, be the initial length of the sound impulse, 
and V be the specific volGe of the gas equal to l/p. 
coefficient 

We introduce the 

1 
mo = 2po8aoa avg ( ) 

aBp 
s 

which is equal to (K + 1)/z, where K is the adiabatic 
Making use of the obtained results, one can show that 
of the shock wave is determined by the Formula [2-41 

index of Poisson. 
the amplitude p,’ 

Here dl is the ray’s element of length, which is equal to a,,dt. 

The length A* of the wave changes in accordance with the Equation 

[3,41 

Let us compute the total energy F per unit of time of an elementary 
sound impulse contained within a ray tube with cross section area f. The 

total energy of a sound impulse, with a triangular prqfile for the sur- 
plus pressure, whose amplitude and length are given by the Formulas (2.1) 
and (2.2), respectively, is equal to 

1 hofoP0’ 1 . E=------_ 
If 

7 
3~?f/poao 

JIy P*’ 

‘lhe change of energy of the considered impulse is determined by the 

derivative* 

Making use of the Equation (2.1), we find 

l He note that in the approximations of geometrical acoustics E = 
A, f0s0/3 and dE/dt = 0. 
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This yields an expression for the sought change of the total energy 
of an elementary sound impulse 

dE 
dt= - $ +$FfP*‘3 (2.3) 

We will show that the found change in the quantity E is due to the 
dissipation of the energy of the shock wave. The value of this dissipa- 
tion, caused by the viscosity and heat-conductivity, can be computed for 
an ideal fluid on the basis of the same change in entropy s ’ which 
occurs in a shock wave. The quantity s* ’ is an infinitesimal of the third 
order in the surplus pressure p, ‘, and is determined by the formula 

1 mo s,’ = -- 
6 p&,,‘Tt, p* 

1s 

With the aid of the derived expression, we can find the energy which 
in a unit of time is scattered in the form of heat on an element of the 
shock front of area f. Let Q denote the dissipated energy, Its change per 
unit time on the separated element of the shock front is 

dQ 1 mo 
-z-= -- ,s 

6 p$a$ f p* 

which coincides with the Expression (2.3) taken with the opposite sign. 
‘Ihis fact makes it possible to find (without the computation of the 
approximation of geometric acoustics) the law of the decay of a small 
amplitude shock wave moving in an inhomogeneous medium. ‘Ihe change in 
energy of an elementary sound impulse of length h+, contained in a ray 
tube of cross section area f, and having on the front the surplus pres- 
sure p,‘, will be 

f h,P*‘q = - ; g& fP2 

Here the quantity A* satisfies the relation [41 

dL _ A, da0 --. 
dt a0 dt 

++b& 

(2.4) 

(2.5) 

The system of ordinary differential equations (2.4) and (2.5) must be 
solved with the initial condition 

h, = ho P*’ = Pal when t = to 

It is not difficult to prove that the solution of the system of Equa- 
tions (2.4) and (2.5), that satisfies this condition, is given by the 
Formulas (2.11 and (2.2). 

‘Ihe author thanks S.A. Khristianovich for appraising this work. 
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